[Resource Topic] 2023/1202: Extension of Shannon's theory of ciphers based on Latin rectangles

Welcome to the resource topic for 2023/1202

Title:
Extension of Shannon’s theory of ciphers based on Latin rectangles

Authors: Karel BURDA

Abstract:

The paper extends Shannon’s classical theory of ciphers. Here ciphers are modeled by Latin rectangles and their resistance to brute force attack is assessed through the valence of cryptograms. The valence of a cryptogram is defined as the number of all meaningful messages produced by decrypting the cryptogram with all possible keys. In this paper, the mean cryptogram valence of an arbitrary modern cipher with K keys, N outputs and N inputs, of which M inputs are messages, is derived. Furthermore, the lower bound on the valence of the cryptograms of entire ciphers is derived in this paper. The obtained parameters allow to assess the resistance of cryptograms, resp. ciphers against brute force attack. The model is general, illustrative and uses a simpler mathematical apparatus than existing theory. Therefore, it can also be used as an introduction to the theory of resistance of ciphers to brute force attack.

ePrint: https://eprint.iacr.org/2023/1202

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .