Welcome to the resource topic for 2023/1196
Title:
A New Paradigm for Verifiable Secret Sharing
Authors: Sourav Das, Zhuolun Xiang, Alin Tomescu, Alexander Spiegelman, Benny Pinkas, Ling Ren
Abstract:Verifiable Secret Sharing (VSS) is a fundamental building block in cryptography. Despite its importance and extensive studies, existing VSS protocols are often complex and inefficient. Many of them do not support dual threads, are not publicly verifiable, or do not properly terminate in asynchronous networks. In this paper, we present a new and simple paradigm for designing VSS protocols in synchronous and asynchronous networks. Our VSS protocols are optimally fault-tolerant, i.e., they tolerate a 1/2 and a 1/3 fraction of malicious nodes in synchronous and asynchronous networks, respectively. They only require a public key infrastructure and the hardness of discrete logarithms. Our protocols support dual thresholds and their transcripts are publicly verifiable. We implement our VSS protocols and measure their computation and communication costs with up to 1024 nodes. Our evaluation illustrates that our VSS protocols provide asynchronous termination and public verifiability with minimum performance overhead. Compared to the existing VSS protocol with similar guarantees, our protocols are 5-15× and 8-13× better in computation and communication cost, respectively.
ePrint: https://eprint.iacr.org/2023/1196
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .