[Resource Topic] 2023/1115: Two Shuffles Make a RAM: Improved Constant Overhead Zero Knowledge RAM

Welcome to the resource topic for 2023/1115

Two Shuffles Make a RAM: Improved Constant Overhead Zero Knowledge RAM

Authors: Yibin Yang, David Heath


We optimize Zero Knowledge (ZK) proofs of statements expressed as RAM programs over arithmetic values. Our arithmetic-circuit-based read/write memory uses only 4 input gates and 6 multiplication gates per memory access. This is an almost 3× total gate improvement over prior state of the art (Delpech de Saint Guilhem et al., SCN’22).

We implemented our memory in the context of ZK proofs based on vector oblivious linear evaluation (VOLE), and we further optimize based on techniques available in the VOLE setting. Our experiments show that (1) our total runtime improves over that of the prior best VOLE-ZK RAM (Franzese et al., CCS’21) by up to 20× and (2) on a typical hardware setup, we can achieve ≈ 600K RAM accesses per second.

We also develop improved read-only memory and set ZK data structures. These are used internally in our read/write memory and improve over prior work.

ePrint: https://eprint.iacr.org/2023/1115

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .