Welcome to the resource topic for 2023/076
Title:
Bake It Till You Make It: Heat-induced Leakage from Masked Neural Networks
Authors: Dev M. Mehta, Mohammad Hashemi, David S. Koblah, Domenic Forte, Fatemeh Ganji
Abstract:Masking has become one of the most effective approaches for securing hardware designs against side-channel attacks. Irrespective of the effort put into correctly implementing masking schemes on a field programmable gate array (FPGA), leakage can be unexpectedly observed. This is due to the fact that the assumption underlying all masked designs, i.e., the leakages of different shares are independent of each other, may no longer hold in practice. In this regard, extreme temperatures have been shown to be an important factor in inducing leakage, even in correctly-masked designs. This has previously been verified using an external heat generator (i.e., a climate chamber). In this paper, we examine whether the leakage can be induced using the circuit components themselves. Specifically, we target masked neural networks (NNs) in FPGAs, with one of the main building blocks being block random access memory (BRAM) and flip-flops (FFs). In this respect, thanks to the inherent characteristics of NNs, our novel internal heat generators leverage solely the memories devoted to storing the user’s input, especially when frequently writing alternating patterns into BRAMs and FFs. The possibility of observing first-order leakage is evaluated by considering one of the most recent and successful first-order secure masked NNs, namely ModuloNET. ModuloNET is specifically designed for FPGAs, where BRAMs are used for storing the inputs and intermediate computations. Our experimental results demonstrate that undesirable first-order leakage can be observed by increasing the temperature when an alternating input is applied to the masked NN. To give a better understanding of the impact of extreme heat, we further perform a similar test on the design with FFs storing the input, where the same conclusion can be drawn.
ePrint: https://eprint.iacr.org/2023/076
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .