Welcome to the resource topic for 2023/061
Title:
Key-and-Signature Compact Multi-Signatures: A Compiler with Realizations
Authors: Shaoquan Jiang, Dima Alhadidi, Hamid Fazli Khojir
Abstract:Multi-signature is a protocol where a set of signatures jointly sign a message so that the final signature is significantly shorter than concatenating individual signatures together. Recently, it finds applications in blockchain, where several users want to jointly authorize a payment through a multi-signature. However, in this setting, there is no centralized authority and it could suffer from a rogue key attack where the attacker can generate his own keys arbitrarily. Further, to minimize the storage on blockchain, it is desired that the aggregated public-key and the aggregated signature are both as short as possible. In this paper, we find a compiler that converts a kind of identification (ID) scheme (which we call a linear ID) to a multi-signature so that both the aggregated public-key and the aggregated signature have a size independent of the number of signers. Our compiler is provably secure. The advantage of our results is that we reduce a multi-party problem to a weakly secure two-party problem. We realize our compiler with two ID schemes. The first is Schnorr ID. The second is a new lattice-based ID scheme, which via our compiler gives the first regular lattice-based multi-signature scheme with key-and-signature compact without a restart during signing process.
ePrint: https://eprint.iacr.org/2023/061
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .