[Resource Topic] 2023/016: Simple Threshold (Fully Homomorphic) Encryption From LWE With Polynomial Modulus

Welcome to the resource topic for 2023/016

Title:
Simple Threshold (Fully Homomorphic) Encryption From LWE With Polynomial Modulus

Authors: Katharina Boudgoust, Peter Scholl

Abstract:

The learning with errors (LWE) assumption is a powerful tool for building encryption schemes with useful properties, such as plausible resistance to quantum computers, or support for homomorphic computations. Despite this, essentially the only method of achieving threshold decryption in schemes based on LWE requires a modulus that is superpolynomial in the security parameter, leading to a large overhead in ciphertext sizes and computation time.

In this work, we propose a (fully homomorphic) encryption scheme that supports a simple t-out-of-n threshold decryption protocol while allowing for a polynomial modulus. The main idea is to use the Rényi divergence (as opposed to the statistical distance as in previous works) as a measure of distribution closeness. This comes with some technical obstacles, due to the difficulty of using the Rényi divergence in decisional security notions such as standard semantic security. We overcome this by constructing a threshold scheme with a weaker notion of one-way security and then showing how to transform any one-way threshold scheme into one guaranteeing semantic security.

ePrint: https://eprint.iacr.org/2023/016

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .