Welcome to the resource topic for 2022/1745
Title:
Leakage Resilient l-more Extractable Hash and Applications to Non-Malleable Cryptography
Authors: Aggelos Kiayias, Feng-Hao Liu, Yiannis Tselekounis
Abstract:\ell-more extractable hash functions were introduced by Kiayias et al. (CCS '16) as a strengthening of extractable hash functions by Goldwasser et al. (Eprint '11) and Bitansky et al. (ITCS '12, Eprint '14). In this work, we define and study an even stronger notion of leakage-resilient \ell-more extractable hash functions, and instantiate the notion under the same assumptions used by Kiayias et al. and Bitansky et al. In addition, we prove that any hash function that can be modeled as a Random Oracle (RO) is leakage resilient \ell-more extractable, while it is however, not extractable according to the definition by Goldwasser et al. and Bitansky et al., showing a separation of the notions.
We show that this tool has many interesting applications to non-malleable cryptography. Particularly, we can derive efficient, continuously non-malleable, leakage-resilient codes against split-state attackers (TCC '14), both in the CRS and the RO model. Additionally, we can obtain succinct non-interactive non-malleable commitments both in the CRS and the RO model, satisfying a stronger definition than the prior ones by Crescenzo et al. (STOC '98), and Pass and Rosen (STOC '05), in the sense that the simulator does not require access to the original message, while the attacker’s auxiliary input is allowed to depend on it.
ePrint: https://eprint.iacr.org/2022/1745
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .