[Resource Topic] 2022/1625: Efficient FHE with Threshold Decryption and Application to Real-Time Systems

Welcome to the resource topic for 2022/1625

Title:
Efficient FHE with Threshold Decryption and Application to Real-Time Systems

Authors: Siddhartha Chowdhury, Sayani Sinha, Animesh Singh, Shubham Mishra, Chandan Chaudhary, Sikhar Patranabis, Pratyay Mukherjee, Ayantika Chatterjee, Debdeep Mukhopadhyay

Abstract:

Threshold Fully Homomorphic Encryption (ThFHE) enables arbitrary computation over encrypted data while keeping the decryption key to be distributed across multiple parties at all time. ThFHE is a key enabler for threshold cryptography and, more generally, secure distributed computing. Existing ThFHE schemes inherently require highly inefficient parameters and are unsuitable for practical deployment. In this paper, we take the first step towards to make ThFHE practically usable by (i) proposing a novel ThFHE scheme with a new analysis resulting in significantly improved parameters; (ii) and providing the first ThFHE implementation benchmark based on Torus FHE.

• We propose the first ThFHE scheme with a polynomial modulus-to-noise ratio that supports practically efficient parameters while retaining provable security based on standard quantum-safe assumptions. We achieve this via a novel Rényi divergence-based security analysis of our proposed threshold decryption mechanism.

• We present a highly optimized software implementation of our proposed ThFHE scheme that builds upon the existing Torus FHE library and supports (distributed) decryption on highly resource-constrained ARM-based handheld devices. To the best of our knowledge, this is the first practically efficient implementation of any ThFHE scheme. Along the way, we implement several extensions to the Torus FHE library, including a Torus-based linear integer secret sharing subroutine to support ThFHE key sharing and distributed decryption for any threshold access structure.

We illustrate the efficacy of our proposal via an end-to-end use case involving encrypted computations over a real medical database, and distributed decryptions of the computed result on resource-constrained handheld devices.

ePrint: https://eprint.iacr.org/2022/1625

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .