Welcome to the resource topic for 2022/1602
Title:
Survey on Fully Homomorphic Encryption, Theory, and Applications
Authors: Chiara Marcolla, Victor Sucasas, Marc Manzano, Riccardo Bassoli, Frank H.P. Fitzek, Najwa Aaraj
Abstract:Data privacy concerns are increasing significantly in the context of Internet of Things, cloud services, edge computing, artificial intelligence applications, and other applications enabled by next generation networks. Homomorphic Encryption addresses privacy challenges by enabling multiple operations to be performed on encrypted messages without decryption. This paper comprehensively addresses homomorphic encryption from both theoretical and practical perspectives. The paper delves into the mathematical foundations required to understand fully homomorphic encryption (FHE). It consequently covers design fundamentals and security properties of FHE and describes the main FHE schemes based on various mathematical problems. On a more practical level, the paper presents a view on privacy-preserving Machine Learning using homomorphic encryption, then surveys FHE at length from an engineering angle, covering the potential application of FHE in fog computing, and cloud computing services. It also provides a comprehensive analysis of existing state-of-the-art FHE libraries and tools, implemented in software and hardware, and the performance thereof.
ePrint: https://eprint.iacr.org/2022/1602
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .