[Resource Topic] 2022/1601: Revisiting the Concrete Hardness of SelfTargetMSIS in CRYSTALS-Dilithium

Welcome to the resource topic for 2022/1601

Revisiting the Concrete Hardness of SelfTargetMSIS in CRYSTALS-Dilithium

Authors: Geng Wang, Wenwen Xia, Gongyu Shi, Ming Wan, Yuncong Zhang, Dawu Gu


In this paper, we reconsider the security for CRYSTALS-Dilithium, a lattice-based post-quantum signature scheme standardized by NIST. In their documentation, the authors proved that the security of the signature scheme can be based on the hardness of the following three assumptions: MLWE, MSIS and SelfTargetMSIS. While the first two are standard lattice assumptions with hardness well studied, the authors claimed that the third assumption SelfTargetMSIS can be estimated by the hardness of MSIS (and further into SIS). However, we point out that this is in fact not the case. We give a new algorithm for solving SelfTargetMSIS, by both experimental results and asymptotic complexities, we prove that under specific parameters, solving SelfTargetMSIS might be faster than MSIS. Although our algorithm does not propose a real threat to parameters used in Dilithium, we successfully show that solving SelfTargetMSIS cannot be turned into solving MSIS or MISIS. Furthermore, we define a new variant of MISIS, called sel-MISIS, and show that solving SelfTargetMSIS can only be turned into solving sel-MISIS. We believe that in order to fully understand the concrete hardness of SelfTargetMSIS and prevent potential attacks to Dilithium, the hardness of this new problem needs to be further studied.

ePrint: https://eprint.iacr.org/2022/1601

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .