[Resource Topic] 2022/1369: Network-Agnostic Security Comes for Free in DKG and MPC

Welcome to the resource topic for 2022/1369

Title:
Network-Agnostic Security Comes for Free in DKG and MPC

Authors: Renas Bacho, Daniel Collins, Chen-Da Liu-Zhang, Julian Loss

Abstract:

Distributed key generation (DKG) protocols are an essential building block for threshold cryptosystems. Many DKG protocols tolerate up to t_s < n/2 corruptions assuming a well-behaved synchronous network, but become insecure as soon as the network delay becomes unstable. On the other hand, solutions in the asynchronous model operate under arbitrary network conditions, but only tolerate t_a < n/3 corruptions, even when the network is well-behaved.

In this work, we ask whether one can design a protocol that achieves security guarantees in either scenario. We show a complete characterization of network-agnostic DKG protocols, showing that the tight bound is t_a+2t_s <n. As a second contribution, we provide an optimized version of the network-agnostic MPC protocol by Blum, Liu-Zhang and Loss [CRYPTO’20] which improves over the communication complexity of their protocol by a linear factor. Moreover, using our DKG protocol, we can instantiate our MPC protocol in the plain PKI model, i.e., without the need to assume an expensive trusted setup.

Our protocols incur the same communication complexity as state-of-the-art DKG and MPC protocols with optimal resilience in their respective purely synchronous and asynchronous settings, thereby showing that network-agnostic security comes for free.

ePrint: https://eprint.iacr.org/2022/1369

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .