Welcome to the resource topic for 2022/1356
Title:
A fully classical LLL algorithm for modules
Authors: Gabrielle De Micheli, Daniele Micciancio
Abstract:The celebrated LLL algorithm for Euclidean lattices is central to cryptanalysis of well- known and deployed protocols as it provides approximate solutions to the Shortest Vector Problem (SVP). Recent interest in algebrically structured lattices (e.g., for the efficient implementation of lattice- based cryptography) has prompted adapations of LLL to such structured lattices, and, in particular, to module lattices, i.e., lattices that are modules over algebraic ring extensions of the integers. One of these adaptations is a quantum algorithm proposed by Lee, Pellet-Mary, Stehlé and Wallet (Asiacrypt 2019). In this work, we dequantize the algorithm of Lee et al., and provide a fully classical LLL-type algorithm for arbitrary module lattices that achieves same SVP approximation factors, single exponential in the rank of the input module. Just like the algorithm of Lee et al., our algorithm runs in polynomial time given an oracle that solves the Closest Vector Problem (CVP) in a certain, fixed lattice L_K that depends only on the number field K.
ePrint: https://eprint.iacr.org/2022/1356
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .