[Resource Topic] 2022/1203: On Module Unique-SVP and NTRU

Welcome to the resource topic for 2022/1203

Title:
On Module Unique-SVP and NTRU

Authors: Joël Felderhoff, Alice Pellet-Mary, Damien Stehlé

Abstract:

The NTRU problem can be viewed as an instance of finding a short non-zero vector in a lattice, under the promise that it contains an exceptionally short vector. Further, the lattice under scope has the structure of a rank-2 module over the ring of integers of a number field. Let us refer to this problem as the module unique Shortest Vector Problem,or mod-uSVP for short. We exhibit two reductions that together provide evidence the NTRU problem is not just a particular case of mod-uSVP, but representative of it from a computational perspective.

First, we reduce worst-case mod-uSVP to worst-case NTRU. For this, we rely on an oracle for id-SVP, the problem of finding short non-zero vectors in ideal lattices. Using the worst-case id-SVP to worst-case NTRU reduction from Pellet-Mary and Stehlé [ASIACRYPT’21],this shows that worst-case NTRU is equivalent to worst-case mod-uSVP.

Second, we give a random self-reduction for mod-uSVP. We put forward a distribution D over mod-uSVP instances such that solving mod-uSVP with a non-negligible probability for samples from D allows to solve mod-uSVP in the worst-case. With the first result, this gives a reduction from worst-case mod-uSVP to an average-case version of NTRU where the NTRU instance distribution is inherited from D. This worst-case to average-case reduction requires an oracle for id-SVP.

ePrint: https://eprint.iacr.org/2022/1203

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .