[Resource Topic] 2022/928: Universal Gaussian Elimination Hardware for Cryptographic Purposes

Welcome to the resource topic for 2022/928

Title:
Universal Gaussian Elimination Hardware for Cryptographic Purposes

Authors: Jingwei Hu, Wen Wang, Kris Gaj, Donglong Chen, and Huaxiong Wang

Abstract:

In this paper, we investigate the possibility of performing Gaussian elimination for arbitrary binary matrices on hardware. In particular, we presented a generic approach for hardware-based Gaussian elimination, which is able to process both non-singular and singular matrices. Previous works on hardware-based Gaussian elimination can only process non-singular ones. However, a plethora of cryptosystems, for instance, quantum-safe key encapsulation mechanisms based on rank-metric codes, ROLLO and RQC, which are among NIST post-quantum cryptography standardization round-2 candidates, require performing Gaussian elimination for random matrices regardless of the singularity. We accordingly implemented an optimized and parameterized Gaussian eliminator for (singular) matrices over binary fields, making the intense computation of linear algebra feasible and efficient on hardware. To the best of our knowledge, this work solves for the first time eliminating a singular matrix on reconfigurable hardware and also describes the a generic hardware architecture for rank-code based cryptographic schemes. The experimental results suggest hardware-based Gaussian elimination can be done in linear time regardless of the matrix type.

ePrint: https://eprint.iacr.org/2022/928

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .