[Resource Topic] 2022/762: The Price of Verifiability: Lower Bounds for Verifiable Random Functions

Welcome to the resource topic for 2022/762

Title:
The Price of Verifiability: Lower Bounds for Verifiable Random Functions

Authors: Nicholas Brandt, Dennis Hofheinz, Julia Kastner, and Akin Ünal

Abstract:

Verifiable random functions (VRFs) are a useful extension of pseudorandom functions for which it is possible to generate a proof that a certain image is indeed the correct function value (relative to a public verification key). Due to their strong soundness requirements on such proofs, VRFs are notoriously hard to construct, and existing constructions suffer either from complex proofs (for function images), or rely on complex and non-standard assumptions. In this work, we attempt to explain this phenomenon. We show that for a large class of pairing-based VRFs, it is not possible to obtain short proofs and a reduction to a simple assumption simultaneously. Since the class of “consecutively verifiable” VRFs we consider contains in particular the VRF of Lysyanskaya and that of Dodis-Yampolskiy, our results explain the large proof size, resp. the complex assumption of these VRFs.

ePrint: https://eprint.iacr.org/2022/762

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .