[Resource Topic] 2022/757: SortingHat: Efficient Private Decision Tree Evaluation via Homomorphic Encryption and Transciphering

Welcome to the resource topic for 2022/757

SortingHat: Efficient Private Decision Tree Evaluation via Homomorphic Encryption and Transciphering

Authors: Kelong Cong, Debajyoti Das, Jeongeun Park, and Hilder V. L. Pereira


Machine learning as a service scenario typically requires the client to trust the server and provide sensitive data in plaintext. However, with the recent improvements in fully homomorphic encryption (FHE) schemes, many such applications can be designed in a privacy preserving way. In this work, we focus on such a problem, private decision tree evaluation (PDTE) — where a server has a decision tree classification model, and a client wants to use the model to classify her private data without revealing the data or the classification result to the server. We present an efficient non-interactive design of PDTE, that we call SortingHat, based on FHE techniques. As part of our design, we solve multiple cryptographic problems related to FHE: (1) we propose a fast homomorphic comparison function where one input can be in plaintext format; (2) we design an efficient binary decision tree evaluation technique in the FHE setting, which we call homomorphic traversal, and apply it together with our homomorphic comparison to evaluate private decision tree classifiers, obtaining running times orders of magnitude faster than the state of the art; (3) we improve both the communication cost and the time complexity of transciphering, by applying our homomorphic comparison to the FiLIP stream cipher. Through a prototype implementation, we demonstrate that our improved transciphering solution runs around 400 times faster than previous works. We finally present a choice in terms of PDTE design: we present a version of SortingHat without transciphering that achieves significant improvement in terms of computation cost comparing to prior works; and another version with transciphering that has a communication cost about 20 thousand times smaller but comparable running time.

ePrint: https://eprint.iacr.org/2022/757

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .

The source code of the programs used to run all the experiments and obtain the practical results is open source and available in this repository.