Welcome to the resource topic for 2022/730
Title:
New Dolev-Reischuk Lower Bounds Meet Blockchain Eclipse Attacks
Authors: Gilad Stern and Ittai Abraham
Abstract:In 1985, Dolev and Reischuk proved a fundamental communication lower bounds on protocols achieving fault tolerant synchronous broadcast and consensus: any deterministic protocol solving those tasks requires at least a quadratic number of message to be sent by nonfaulty parties. Followup work by Abraham, Chun, Dolev, Nayak, Pass, Ren and Shi shows a similar lower bound for randomized protocols. With the rise of blockchain systems, there have been many real-world systems that achieve consensus with seemingly linear communication per instance. We bridge this discrepancy in two ways. First, we generalize the lower bound to Crusader Broadcast protocols, and to all-but m Crusader Broadcast. Second, we discuss the ways these lower bounds relate to the security of blockchain systems. Specifically, we show how eclipse style attacks in such systems can be viewed as specific instances of Dolev-Reischuk style attacks. Our observation suggests a more systematic way of analyzing and thinking about eclipse style attacks through the lens of the Dolev-Reischuk family of attacks. Finally, we present an example of a simple subquadratic Crusader Broadcast protocol whose security is highly dependent on insights from the presented lower bounds.
ePrint: https://eprint.iacr.org/2022/730
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .