[Resource Topic] 2022/724: A Power Side-Channel Attack on the Reed-Muller Reed-Solomon Version of the HQC Cryptosystem

Welcome to the resource topic for 2022/724

Title:
A Power Side-Channel Attack on the Reed-Muller Reed-Solomon Version of the HQC Cryptosystem

Authors: Thomas Schamberger, Lukas Holzbaur, Julian Renner, Antonia Wachter-Zeh, and Georg Sigl

Abstract:

The code-based post-quantum algorithm Hamming Quasi-Cyclic (HQC) is a third round alternative candidate in the NIST standardization project. For their third round version the authors utilize a new combination of error correcting codes, namely a combination of a Reed-Muller and a Reed-Solomon code, which requires an adaption of published attacks. We identify that the power side-channel attack by Uneo et al. from CHES 2021 does not work in practice as they miss the fact that the implemented Reed-Muller decoder does not have a fixed decoding boundary. In this work we provide a novel attack strategy that again allows for a successful attack. Our attack does not rely on simulation to verify it success but is proven with high probability for the HQC parameter sets. In contrast to the timing side-channel attack by Guo et al. we are able to reduce the required attack queries by a factor of 12 and are able to eliminate the inherent uncertainty of their used timing oracle. We show practical attack results utilizing a power side-channel of the used Reed-Solomon decoder on an ARM Cortex-M4 microcontroller. In addition, we provide a discussion on how or whether our attack strategy to be usable with the side-channel targets of mentioned related work. Finally, we use information set decoding to evaluate the remaining attack complexity for partially retrieved secret keys. This work again emphasizes the need for a side-channel secure implementation of all relevant building blocks of HQC.

ePrint: https://eprint.iacr.org/2022/724

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .