[Resource Topic] 2022/675: MPClan: Protocol Suite for Privacy-Conscious Computations

Welcome to the resource topic for 2022/675

Title:
MPClan: Protocol Suite for Privacy-Conscious Computations

Authors: Nishat Koti, Shravani Patil, Arpita Patra, and Ajith Suresh

Abstract:

The growing volumes of data being collected and its analysis to provide better services are creating worries about digital privacy. To address privacy concerns and give practical solutions, the literature has relied on secure multiparty computation. However, recent research has mostly focused on the small-party honest-majority setting of up to four parties, noting efficiency concerns. In this work, we extend the strategies to support a larger number of participants in an honest-majority setting with efficiency at the center stage. Cast in the preprocessing paradigm, our semi-honest protocol improves the online complexity of the decade-old state-of-the-art protocol of Damgård and Nielson (CRYPTO’07). In addition to having an improved online communication cost, we can shut down almost half of the parties in the online phase, thereby saving up to 50$% in the system's operational costs. Our maliciously secure protocol also enjoys similar benefits and requires only half of the parties, except for one-time verification, towards the end. To showcase the practicality of the designed protocols, we benchmark popular applications such as deep neural networks, graph neural networks, genome sequence matching, and biometric matching using prototype implementations. Our improved protocols aid in bringing up to 60-80%$ savings in monetary cost over prior work.

ePrint: https://eprint.iacr.org/2022/675

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .