Welcome to the resource topic for 2022/606
Title:
Security Against Honorific Adversaries: Efficient MPC with Server-aided Public Verifiability
Authors: Li Duan, Yufan Jiang, Yong Li, Jörn Müller-Quade, Andy Rupp
Abstract:Secure multiparty computation (MPC) allows distrustful parties to jointly compute some functions while keeping their private secrets unrevealed. MPC adversaries are often categorized as semi-honest and malicious, depending on whether they follow the protocol specifications or not. Covert security was first introduced by Aumann and Lindell in 2007, which models a third type of active adversaries who cheat but can be caught with a probability. However, this probability is predefined externally, and the misbehavior detection must be made by other honest participants with cut-and-choose in current constructions. In this paper, we propose a new security notion called security against honorific adversaries, who may cheat during the protocol execution but are extremely unwilling to be punished. Intuitively, honorific adversaries can cheat successfully, but decisive evidence of misbehavior will be left to honest parties with a probability close to one. By introducing an independent but not trusted auditor to the MPC ideal functionality in the universal composability framework (UC), we avoid heavy cryptographic machinery in detection and complicated discussion about the probability of being caught. With this new notion, we construct new provably secure protocols without cut-and-choose for garbled circuits that are much more efficient than those in the covert and malicious model, with slightly more overhead than passively secure protocols.
ePrint: https://eprint.iacr.org/2022/606
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .