[Resource Topic] 2022/190: Short-lived zero-knowledge proofs and signatures

Welcome to the resource topic for 2022/190

Title:
Short-lived zero-knowledge proofs and signatures

Authors: Arasu Arun, Joseph Bonneau, Jeremy Clark

Abstract:

We introduce the short-lived proof, a non-interactive proof of knowledge with a novel feature: after a specified period of time, the proof is no longer convincing. This time-delayed loss of soundness happens “naturally” without further involvement from the prover or any third party. We propose formal definitions for short-lived proofs as well as the special case of short-lived signatures. We show several practical constructions built using verifiable delay functions (VDFs). The key idea in our approach is to allow any party to forge any proof by executing a large sequential computation. Some constructions achieve a stronger property called reusable forgeability in which one sequential computation allows forging an arbitrary number of proofs of different statements. Our work also introduces two novel types of VDFs, re-randomizable VDFs and zero-knowledge VDFs, which may be of independent interest.

ePrint: https://eprint.iacr.org/2022/190

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .