[Resource Topic] 2022/177: The Power of the Differentially Oblivious Shuffle in Distributed Privacy Mechanisms

Welcome to the resource topic for 2022/177

Title:
The Power of the Differentially Oblivious Shuffle in Distributed Privacy Mechanisms

Authors: Mingxun Zhou, Elaine Shi

Abstract:

The shuffle model has been extensively investigated in the distributed differential privacy (DP) literature. For a class of useful computational tasks, the shuffle model allows us to achieve privacy-utility tradeoff similar to those in the central model, while shifting the trust from a central data curator to a ``trusted shuffle’’ which can be implemented through either trusted hardware or cryptography. Very recently, several works explored cryptographic instantiations of a new type of shuffle with relaxed security, called {\it differentially oblivious (DO) shuffles}. These works demonstrate that by relaxing the shuffler’s security from simulation-style secrecy to differential privacy, we can achieve asymptotical efficiency improvements. A natural question arises, can we replace the shuffler in distributed DP mechanisms with a DO-shuffle while retaining a similar privacy-utility tradeoff? In this paper, we prove an optimal privacy amplification theorem by composing any locally differentially private (LDP) mechanism with a DO-shuffler, achieving parameters that tightly match the shuffle model. Moreover, we explore multi-message protocols in the DO-shuffle model, and construct mechanisms for the real summation and histograph problems. Our error bounds approximate the best known results in the multi-message shuffle-model up to sub-logarithmic factors. Our results also suggest that just like in the shuffle model, allowing each client to send multiple messages is fundamentally more powerful than restricting to a single message. As an application, we derive the result of using repeated DO-shuffling for privacy-preserving time-series data aggregation.

ePrint: https://eprint.iacr.org/2022/177

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .