Welcome to the resource topic for 2021/856
Title:
Key Guessing Strategies for Linear Key-Schedule Algorithms in Rectangle Attacks
Authors: Xiaoyang Dong, Lingyue Qin, Siwei Sun, Xiaoyun Wang
Abstract:When generating quartets for the rectangle attacks on ciphers with linear key-schedule, we find the right quartets which may suggest key candidates have to satisfy some nonlinear relations. However, some quartets generated always violate these relations, so that they will never suggest any key candidates. Inspired by previous rectangle frameworks, we find that guessing certain key cells before generating quartets may reduce the number of invalid quartets. However, guessing a lot of key cells at once may lose the benefit from the early abort technique, which may lead to a higher overall complexity. To get better tradeoff, we build a new rectangle framework on ciphers with linear key-schedule with the purpose of reducing overall complexity or attacking more rounds. In the tradeoff model, there are many parameters affecting the overall complexity, especially for the choices of the number and positions of key guessing cells before generating quartets. To identify optimal parameters, we build a uniform automatic tool on SKINNY as an example, which includes the optimal rectangle distinguishers for key-recovery phase, the number and positions of guessing key cells before generating quartets, the size of key counters to build that affecting the exhaustive search step, etc. Based on the automatic tool, we identify a 32-round key-recovery attack on SKINNY-128-384 in the related-key setting, which extends the best previous attack by 2 rounds. For other versions with n-2n or n-3n, we also achieve one more round than before. In addition, using the previous rectangle distinguishers, we achieve better attacks on round-reduced ForkSkinny, Deoxys-BC-384 and GIFT-64. At last, we discuss the conversion of our rectangle framework from related-key setting into single-key setting and give new single-key rectangle attack on 10-round Serpent.
ePrint: https://eprint.iacr.org/2021/856
Talk: https://www.youtube.com/watch?v=7HueElHAlwQ
Slides: https://iacr.org/submit/files/slides/2022/eurocrypt/eurocrypt2022/39/slides.pdf
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .