[Resource Topic] 2021/825: Balancing Quality and Efficiency in Private Clustering with Affinity Propagation

Welcome to the resource topic for 2021/825

Title:
Balancing Quality and Efficiency in Private Clustering with Affinity Propagation

Authors: Hannah Keller, Helen Möllering, Thomas Schneider, Hossein Yalame

Abstract:

In many machine learning applications, training data consists of sensitive information from multiple sources. Privacy-preserving machine learning using secure computation enables multiple parties to compute on their joint data without disclosing their inputs to each other. In this work, we focus on clustering, an unsupervised machine learning technique that partitions data into groups. Previous works on privacy-preserving clustering often leak information and focus on the k-means algorithm, which provides only limited clustering quality and flexibility. Additionally, the number of clusters k must be known in advance. We analyze several prominent clustering algorithms’ capabilities and their compatibility with secure computation techniques to create an efficient, fully privacy-preserving clustering implementation superior to k-means. We find affinity propagation to be the most promising candidate and securely implement it using various multi-party computation techniques. Privacy-preserving affinity propagation does not require any input parameters and consists of operations hat are relatively efficient with secure computation. As threat models, we consider passive security as well as active security with an honest and dishonest majority. We offer the first comparison of privacy-preserving clustering between these scenarios, enabling an understanding of the exact trade-offs between them. Based on the clustering quality and the computational and communication costs, privacy-preserving affinity propagation offers a good trade-off between quality and efficiency for practical privacy-preserving clustering.

ePrint: https://eprint.iacr.org/2021/825

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .