[Resource Topic] 2021/639: Indifferentiable Signatures: High Performance and Fallback Security

Welcome to the resource topic for 2021/639

Title:
Indifferentiable Signatures: High Performance and Fallback Security

Authors: Charalampos Papamanthou, Cong Zhang, Hong-Sheng Zhou

Abstract:

Digital signatures have been widely used as building blocks for constructing complex cryptosystems. To facilitate the security analysis of a complex system, we expect the underlying building blocks to achieve desirable composability. Notably, Canetti (FOCS 2001) and then Maurer et al (TCC 2004) propose analysis frameworks, the Universal Composability framework for cryptographic protocols, and the indifferentiability framework for cryptographic objects. In this paper, we develop a “lifting strategy”, which allows us to compile multiple existing practical signature schemes using cyclic group (e.g., Schnorr, Boneh-Boyen), to achieve a very stringent security guarantee, in an idealized model of the generic (bilinear) group, without introducing much extra efficiency loss. What’s more interesting is that, in our design, even the involved idealized model does not exist, our compiled construction will still be able to achieve the classical notion of unforgeability. To achieve both indifferentiability and good efficiency, we develop new techniques in generic (bilinear) group model.

ePrint: https://eprint.iacr.org/2021/639

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .