[Resource Topic] 2021/418: Ring-LWE over two-to-power cyclotomics is not hard

Welcome to the resource topic for 2021/418

Title:
Ring-LWE over two-to-power cyclotomics is not hard

Authors: Hao Chen

Abstract:

The Ring-LWE over two-to-power cyclotomic integer rings has been the hard computational problem for lattice cryptographic constructions. Its hardness and the conjectured hardness of approximating ideal SIVP for ideal lattices in two-to-power cyclotomic fields have been the fundamental open problems in lattice cryptography and the computational number theory. In our previous paper we presented a general theory of subset attack on the Ring-LWE with not only the Gaussian error distribution but also general error distributions. By the usage of our subset attack from sublattice quadruples we prove that the decision Ring-LWE (then the search version) over two-to-power cyclotomic integer rings with certain sufficiently large polynomially bounded modulus parameters when degrees d_n = 2^{n-1} going to the infinity can be solved by a polynomial (in d_n) time algorithm for wide error distributions with widths in the range of Peikert-Regev-Stephens-Davidowitz hardness reduction results in their STOC 2017 paper. Hence we also prove that approximating idealSIV Ppoly(dn) with some polynomial factors for ideal lattices in two-to-power cyclotomic fields can be solved within the quantum polynomial time. Therefore post-quantum lattice cryptographic constructions can not be based on the ”hardness” of Ring-LWE over two-to-power cyclotomic integer rings even in the classical computational model.

ePrint: https://eprint.iacr.org/2021/418

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .