[Resource Topic] 2021/410: Blindly Follow: SITS CRT and FHE for DCLSMPC of DUFSM

Welcome to the resource topic for 2021/410

Title:
Blindly Follow: SITS CRT and FHE for DCLSMPC of DUFSM

Authors: Shlomi Dolev, Stav Doolman

Abstract:

A Statistical Information Theoretic Secure (SITS) system utilizing the Chinese Remainder Theorem (CRT), coupled with Fully Homomorphic Encryption (FHE) for Distributed Communication-less Secure Multiparty Computation (DCLSMPC) of any Distributed Unknown Finite State Machine (DUFSM) is presented. Namely, secret shares of the input(s) and output(s) are passed to/from the computing parties, while there is no communication between them throughout the computation. We propose a novel approach of transition table representation and polynomial representation for arithmetic circuits evaluation, joined with a CRT secret sharing scheme and FHE to achieve SITS communication-less within computational secure execution of DUFSM. We address the severe limitation of FHE implementation over a single server to cope with a malicious or Byzantine server. We use several distributed memory-efficient solutions that are significantly better than the majority vote in replicated state machines, where each participant maintains an FHE replica. A Distributed Unknown Finite State Machine (DUFSM) is achieved when the transition table is secret shared or when the (possible zero value) coefficients of the polynomial are secret shared, implying communication-less SMPC of an unknown finite state machine.

ePrint: https://eprint.iacr.org/2021/410

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .