[Resource Topic] 2021/405: Revisiting some results on APN and algebraic immune functions

Welcome to the resource topic for 2021/405

Title:
Revisiting some results on APN and algebraic immune functions

Authors: Claude Carlet

Abstract:

We push a little further the study of two characterizations of almost perfect nonlinear (APN) functions introduced in our recent monograph. We state open problems about them, and we revisit in their perspective a well-known result from Dobbertin on APN exponents. This leads us to new results about APN power functions and more general APN polynomials with coefficients in a subfield F_{2^k} , which ease the research of such functions and of differentially uniform functions, and simplifies the related proofs by avoiding tedious calculations. In a second part, we give slightly simpler proofs than in the same monograph, of two known results on Boolean functions, one of which deserves to be better known but needed clarification, and the other needed correction.

ePrint: https://eprint.iacr.org/2021/405

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .