[Resource Topic] 2021/275: Design Space Exploration of Galois and Fibonacci Configuration based on Espresso Stream Cipher

Welcome to the resource topic for 2021/275

Title:
Design Space Exploration of Galois and Fibonacci Configuration based on Espresso Stream Cipher

Authors: Zhengyuan Shi, Gangqiang Yang, Hailiang Xiong, Fudong Li, Honggang Hu

Abstract:

Galois and Fibonacci are two different configurations of stream ciphers. Because the Fibonacci configuration is more convenient for cryptanalysis, most ciphers are designed as Fibonacci-configured. So far, although many transformations between Fibonacci and Galois configurations have been proposed, there is no sufficient analysis of their respective hardware performance. The 128-bit secret key stream cipher Espresso, its Fibonacciconfigured variant and linear Fibonacci variant have a similar security level. We take them as examples to design the optimization strategies in terms of both area and throughput, investigate which configuration is more efficient in a certain aspect. The Fibonacci-configured Espresso occupies 52 slices on Spartan-3 and 22 slices on Virtex-7, which are the minimum solutions among those three Espresso schemes or even smaller than 80-bit secret key ciphers. Based on our throughput improvement strategy, parallel Espresso design can perform 4.1 Gbps on Virtex-7 FPGA and 1.9 Gbps on Spartan-3 FPGA at most. In brief, the Fibonacci cipher is more suitable for extremely resource-constrained or extremely high-throughput applications, while the Galois cipher seems like a compromise between area and speed. Besides, the transformation from nonlinear feedback to linear feedback is not recommended for any hardware implementations.

ePrint: https://eprint.iacr.org/2021/275

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .