[Resource Topic] 2021/271: On the CCA Compatibility of Public-Key Infrastructure

Welcome to the resource topic for 2021/271

Title:
On the CCA Compatibility of Public-Key Infrastructure

Authors: Dakshita Khurana, Brent Waters

Abstract:

In this work, we study the compatibility of any key generation or setup algorithm. We focus on the specific case of encryption, and say that a key generation algorithm KeyGen is X-compatible (for X \in {CPA, CCA1, CCA2}) if there exist encryption and decryption algorithms that together with KeyGen, result in an X-secure public-key encryption scheme. We study the following question: Is every CPA-compatible key generation algorithm also CCA-compatible? We obtain the following answers: - Every sub-exponentially CPA-compatible KeyGen algorithm is CCA1-compatible, assuming the existence of hinting PRGs and sub-exponentially secure keyless collision resistant hash functions. - Every sub-exponentially CPA-compatible KeyGen algorithm is also CCA2-compatible, assuming the existence of non-interactive CCA2 secure commitments, in addition to sub-exponential security of the assumptions listed in the previous bullet. Here, sub-exponentially CPA-compatible KeyGen refers to any key generation algorithm for which there exist encryption and decryption algorithms that result in a CPA-secure public-key encryption scheme {\em against sub-exponential adversaries}. This gives a way to perform CCA secure encryption given any public key infrastructure that has been established with only (sub-exponential) CPA security in mind. The resulting CCA encryption makes black-box use of the CPA scheme and all other underlying primitives.

ePrint: https://eprint.iacr.org/2021/271

Talk: https://www.youtube.com/watch?v=p5K2YFxu97U

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .