[Resource Topic] 2021/1396: NTT software optimization using an extended Harvey butterfly

Welcome to the resource topic for 2021/1396

Title:
NTT software optimization using an extended Harvey butterfly

Authors: Jonathan Bradbury, Nir Drucker, Marius Hillenbrand

Abstract:

Software implementations of the number-theoretic transform (NTT) method often leverage Harvey’s butterfly to gain speedups. This is the case in cryptographic libraries such as IBM’s HElib, Microsoft’s SEAL, and Intel’s HEXL, which provide optimized implementations of fully homomorphic encryption schemes or their primitives. We extend the Harvey butterfly to the radix-4 case for primes in the range [2^31, 2^52). This enables us to use the vector multiply sum logical (VMSL) instruction, which is available on recent IBM Z^(R) platforms. On an IBM z14 system, our implementation performs more than 2.5x faster than the scalar implementation of SEAL we converted to native C. In addition, we implemented a mixed-radix implementation that uses AVX512-IFMA on Intel’s Ice Lake processor, which happens to be ~1.1 times faster than the super-optimized implementation of Intel’s HEXL. Finally, we compare the performance of some of our implementation using GCC versus Clang compilers and discuss the results.

ePrint: https://eprint.iacr.org/2021/1396

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .