[Resource Topic] 2021/1000: A Lattice-based Provably Secure Multisignature Scheme in Quantum Random Oracle Model

Welcome to the resource topic for 2021/1000

Title:
A Lattice-based Provably Secure Multisignature Scheme in Quantum Random Oracle Model

Authors: Masayuki Fukumitsu, Shingo Hasegawa

Abstract:

The multisignature schemes are attracted to utilize in some cryptographic applications such as the blockchain. Though the lattice-based constructions of multisignature schemes exist as quantum-secure multisignature, a multisignature scheme whose security is proven in the quantum random oracle model (QROM), rather than the classical random oracle model (CROM), is not known. In this paper, we propose a first lattice-based multisignature scheme whose security is proven in QROM. Although our proposed scheme is based on the Dilithium-QROM signature, whose security is proven in QROM, their proof technique cannot be directly applied to the multisignature setting. The difficulty of proving the security in QROM is how to program the random oracle in the security proof. To solve the problems in the security proof, we develop several proof techniques in QROM. First, we employ the searching query technique by Targi and Unruh to convert the Dilithium-QROM into the multisignature setting. For the second, we develop a new programming technique in QROM since the conventional programming techniques seem not to work in the multisignature setting of QROM. We combine the programming technique by Unruh with the one by Liu and Zhandry. The new technique enables us to program the random oracle in QROM and construct the signing oracle in the security proof.

ePrint: https://eprint.iacr.org/2021/1000

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .