[Resource Topic] 2020/891: Keep it Unsupervised: Horizontal Attacks Meet Deep Learning

Welcome to the resource topic for 2020/891

Title:
Keep it Unsupervised: Horizontal Attacks Meet Deep Learning

Authors: Guilherme Perin, Lukasz Chmielewski, Lejla Batina, Stjepan Picek

Abstract:

To mitigate side-channel attacks, real-world implementations of public-key cryptosystems adopt state-of-the-art countermeasures based on randomization of the private or ephemeral keys. Usually, for each private key operation, a “scalar blinding” is performed using 32 or 64 randomly generated bits. Nevertheless, horizontal attacks based on a single trace still pose serious threats to protected ECC or RSA implementations. If the secrets learned through a single-trace attack contain too many wrong (or noisy) bits, the cryptanalysis methods for recovering remaining bits become impractical due to time and computational constraints. This paper proposes a deep learning-based framework to iteratively correct partially correct secret keys resulting from a clustering-based horizontal attack. By testing the trained network on scalar multiplication (or exponentiation) traces, we demonstrate that a deep neural network can significantly reduce the number of error bits from randomized scalars (or exponents). When a simple horizontal attack can recover around 52% of private key bits, the proposed iterative framework improves the private key correctness to 100%. Our attack model remains fully unsupervised and excludes the need to know where the error or noisy bits are located in each separate randomized private key.

ePrint: https://eprint.iacr.org/2020/891

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .