[Resource Topic] 2020/869: An Algorithmic Reduction Theory for Binary Codes: LLL and more

Welcome to the resource topic for 2020/869

Title:
An Algorithmic Reduction Theory for Binary Codes: LLL and more

Authors: Thomas Debris-Alazard, Léo Ducas, Wessel P. J. van Woerden

Abstract:

In this article, we propose an adaptation of the algorithmic reduction theory of lattices to binary codes. This includes the celebrated LLL algorithm (Lenstra, Lenstra, Lovasz, 1982), as well as adaptations of associated algorithms such as the Nearest Plane Algorithm of Babai (1986). Interestingly, the adaptation of LLL to binary codes can be interpreted as an algorithmic version of the bound of Griesmer (1960) on the minimal distance of a code. Using these algorithms, we demonstrate —both with a heuristic analysis and in practice— a small polynomial speed-up over the Information-Set Decoding algorithm of Lee and Brickell (1988) for random binary codes. This appears to be the first such speed-up that is not based on a time-memory trade-off. The above speed-up should be read as a very preliminary example of the potential of a reduction theory for codes, for example in cryptanalysis. In constructive cryptography, this algorithmic reduction theory could for example also be helpful for designing trapdoor functions from codes.

ePrint: https://eprint.iacr.org/2020/869

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .