Welcome to the resource topic for 2020/845
Title:
Post-Quantum Adaptor Signatures and Payment Channel Networks
Authors: Muhammed F. Esgin, Oguzhan Ersoy, Zekeriya Erkin
Abstract:Adaptor signatures, also known as scriptless scripts, have recently become an important tool in addressing the scalability and interoperability issues of blockchain applications such as cryptocurrencies. An adaptor signature extends a digital signature in a way that a complete signature reveals a secret based on a cryptographic condition. It brings about various advantages such as (i) low on-chain cost, (ii) improved fungibility of transactions, and (iii) advanced functionality beyond the limitation of the blockchain’s scripting language. In this work, we introduce the first post-quantum adaptor signature, named LAS. Our construction relies on the standard lattice assumptions, namely Module-SIS and Module-LWE. There are certain challenges specific to the lattice setting, arising mainly from the so-called knowledge gap in lattice-based proof systems, that makes the realization of an adaptor signature and its applications difficult. We show how to overcome these technical difficulties without introducing additional on-chain costs. Our evaluation demonstrates that LAS is essentially as efficient as an ordinary lattice-based signature in terms of both communication and computation. We further show how to achieve post-quantum atomic swaps and payment channel networks using LAS.
ePrint: https://eprint.iacr.org/2020/845
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .