[Resource Topic] 2020/736: Combining Forward-Security and Leakage-Resilience, Revisited

Welcome to the resource topic for 2020/736

Title:
Combining Forward-Security and Leakage-Resilience, Revisited

Authors: Suvradip Chakraborty, Harish Karthikeyan, Adam O'Neill, C. Pandu Rangan

Abstract:

We revisit the combining of forward and leakage resilience, the study of which was initiated by Bellare \emph{et al.} (CANS 2017). Bellare \emph{et al.} combine forward security with continual leakage resilience, dubbed FS+CL. In particular, they construct a FS+CL public-key encryption (PKE) and signatures, but with various shortcomings in terms of leakage rate and assumptions. Our first result significantly improve on Bellare \emph{et al.}'s FS+CL PKE scheme, building a FS+CL PKE from any continuous leakage-resilient binary-tree encryption scheme (in contrast Bellare \emph{et al.} required extractable witness encryption which is a suspect assumption). Our construction preserves the leakage rate and hence yield FS+CL PKE with optimal leakage rate from standard assumption. \ind We next explore alternative combinations of forward security and leakage resilience. As argued by Dziembowski \emph{et al.} (CRYPTO 2011), it is desirable to have a model allowing a deterministic key-update procedure, which FS+CL does not. We put forth a combination of forward security with \emph{entropy bounded} leakage (FS+EBL) that allows such key updates. Then we construct FS+EBL non-interactive key exchange (NIKE) based on indistinguishability obfuscation (\iO), and DDH or LWE. Additionally, to make the public keys constant size, we rely on the Superfluous Padding Assumption (SuPA) of Brzuska and Mittelbach (Eprint 2015). Crucially, we \emph{do not} use auxiliary information in SuPA. SuPA notwithstanding, our scheme improves on the recent bounded leakage-resilient NIKE of Li \emph{et al.} (CRYPTO 2020) and also the FS NIKE construction of Pointcheval and Sanders (SCN 2014) from generic multilinear maps. Finally, we argue that using \emph{computational entropy} (FS+CEBL) is more compelling in the context of deterministic updates. We pose achieving a FS+CEBL NIKE as an important open problem.

ePrint: https://eprint.iacr.org/2020/736

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .