[Resource Topic] 2020/671: Persistent Fault Analysis With Few Encryptions

Welcome to the resource topic for 2020/671

Title:
Persistent Fault Analysis With Few Encryptions

Authors: Sebastien Carre, Sylvain Guilley, Olivier Rioul

Abstract:

Persistent fault analysis (PFA) consists in guessing block cipher secret keys by biasing their substitution box. This paper improves the original attack of Zhang et al. on AES-128 presented at CHES 2018. By a thorough analysis, the exact probability distribution of the ciphertext (under a uniformly distributed plaintext) is derived, and the maximum likelihood key recovery estimator is computed exactly. Its expression is turned into an attack algorithm, which is shown to be twice more efficient in terms of number of required encryptions than the original attack of Zhang et al. This algorithm is also optimized from a computational complexity standpoint. In addition, our optimal attack is naturally amenable to key enumeration, which expedites full 16- bytes key extraction. Various tradeoffs between data and computational complexities are investigated.

ePrint: https://eprint.iacr.org/2020/671

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .