[Resource Topic] 2020/396: Improving Non-Profiled Side-Channel Attacks using Autoencoder based Preprocessing

Welcome to the resource topic for 2020/396

Title:
Improving Non-Profiled Side-Channel Attacks using Autoencoder based Preprocessing

Authors: Donggeun Kwon, HeeSeok Kim, Seokhie Hong

Abstract:

In recent years, deep learning-based side-channel attacks have established their position as mainstream. However, most deep learning techniques for cryptanalysis mainly focused on classifying side-channel information in a profiled scenario where attackers can obtain a label of training data. In this paper, we introduce a novel approach with deep learning for improving side-channel attacks, especially in a non-profiling scenario. We also propose a new principle of training that trains an autoencoder through the noise from real data using noise-reduced labels. It notably diminishes the noise in measurements by modifying the autoencoder framework to the signal preprocessing. We present convincing comparisons on our custom dataset, captured from ChipWhisperer-Lite board, that demonstrate our approach outperforms conventional preprocessing methods such as principal component analysis and linear discriminant analysis. Furthermore, we apply the proposed methodology to realign de-synchronized traces that applied hiding countermeasures, and we experimentally validate the performance of the proposal. Finally, we experimentally show that we can improve the performance of higher-order side-channel attacks by using the proposed technique with domain knowledge for masking countermeasures.

ePrint: https://eprint.iacr.org/2020/396

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .