[Resource Topic] 2020/366: FICS-PCB: A Multi-Modal Image Dataset for Automated Printed Circuit Board Visual Inspection

Welcome to the resource topic for 2020/366

Title:
FICS-PCB: A Multi-Modal Image Dataset for Automated Printed Circuit Board Visual Inspection

Authors: Hangwei Lu, Dhwani Mehta, Olivia Paradis, Navid Asadizanjani, Mark Tehranipoor, Damon L. Woodard

Abstract:

Over the years, computer vision and machine learn- ing disciplines have considerably advanced the field of automated visual inspection for Printed Circuit Board (PCB-AVI) assurance. However, in practice, the capabilities and limitations of these advancements remain unknown because there are few publicly accessible datasets for PCB visual inspection and even fewer that contain images that simulate realistic application scenarios. To address this need, we propose a publicly available dataset, “FICS-PCB”, to facilitate the development of robust methods for PCB-AVI. The proposed dataset includes challenging cases from three variable aspects: illumination, image scale, and image sensor. This dataset consists of 9,912 images of 31 PCB samples and contains 77,347 annotated components. This paper reviews the existing datasets and methodologies used for PCB- AVI, discusses challenges, describes the proposed dataset, and presents baseline performances using feature engineering and deep learning methods for PCB component classification.

ePrint: https://eprint.iacr.org/2020/366

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .