[Resource Topic] 2020/317: Physical Time-Varying Transfer Functions as Generic Low-Overhead Power-SCA Countermeasure

Welcome to the resource topic for 2020/317

Title:
Physical Time-Varying Transfer Functions as Generic Low-Overhead Power-SCA Countermeasure

Authors: Archisman Ghosh, Debayan Das, Shreyas Sen

Abstract:

Mathematically-secure cryptographic algorithms leak significant side-channel information through their power supplies when implemented on a physical platform. These side-channel leakages can be exploited by an attacker to extract the secret key of an embedded device. The existing state-of-the-art countermeasures mainly focus on the power balancing, gate-level masking, or signal-to-noise (SNR) reduction using noise injection and signature attenuation, all of which suffer either from the limitations of high power/area overheads, performance degradation or are not synthesizable. In this article, we propose a generic low-overhead digital-friendly power SCA countermeasure utilizing physical Time-Varying Transfer Functions (TVTF) by randomly shuffling distributed switched capacitors to significantly obfuscate the traces in the time domain. System-level simulation results of the TVTF-AES implemented in TSMC 65nm CMOS technology show > 4000x MTD improvement over the unprotected implementation with ~ 1.25x power and ~ 1.2x area overheads, and without any performance degradation.

ePrint: https://eprint.iacr.org/2020/317

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .