[Resource Topic] 2020/271: Signatures from Sequential-OR Proofs

Welcome to the resource topic for 2020/271

Signatures from Sequential-OR Proofs

Authors: Marc Fischlin, Patrick Harasser, Christian Janson


OR-proofs enable a prover to show that it knows the witness for one of many statements, or that one out of many statements is true. OR-proofs are a remarkably versatile tool, used to strengthen security properties, design group and ring signature schemes, and achieve tight security. The common technique to build OR-proofs is based on an approach introduced by Cramer, Damgård, and Schoenmakers (CRYPTO’94), where the prover splits the verifier’s challenge into random shares and computes proofs for each statement in parallel. In this work we study a different, less investigated OR-proof technique, put forward by Abe, Ohkubo, and Suzuki (ASIACRYPT’02). The difference is that the prover now computes the individual proofs sequentially. We show that such sequential OR-proofs yield signature schemes which can be proved secure in the non-programmable random oracle model. We complement this positive result with a black-box impossibility proof, showing that the same is unlikely to be the case for signatures derived from traditional OR-proofs. We finally argue that sequential-OR signature schemes can be proved secure in the quantum random oracle model, albeit with very loose bounds and by programming the random oracle.

ePrint: https://eprint.iacr.org/2020/271

Talk: https://www.youtube.com/watch?v=lFy9KIeOr00

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .