[Resource Topic] 2020/1466: Load Balancing for Sharded Blockchains

Welcome to the resource topic for 2020/1466

Title:
Load Balancing for Sharded Blockchains

Authors: Naoya Okanami, Ryuya Nakamura, Takashi Nishide

Abstract:

Sharding is an approach to designing a highly scalable blockchain. A sharded blockchain achieves parallelism by dividing consensus nodes (validators) into groups called shards and making them process different transactions in each shard. In this paper, we economically analyze users’ behavior on sharded blockchains and identify a phenomenon that users’ accounts and smart contracts eventually get concentrated in a few shards, making shard loads unfair. This phenomenon leads to bad user experiences, such as delays in transaction inclusions and increased transaction fees. To solve the above problem, we propose a load balancing framework in sharded blockchains in which accounts and contracts are frequently reassigned into shards to reduce the difference of loads between shards. We formulate the contract reassignment as an optimization problem and present the algorithm to solve it. Further, we apply the framework to an existing sharding design (Ethereum 2.0) and modify the protocol to do load balancing. Finally, we simulate the protocol and observe smaller transaction delays and fees.

ePrint: https://eprint.iacr.org/2020/1466

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .