[Resource Topic] 2020/1395: Post-Quantum Multi-Party Computation

Welcome to the resource topic for 2020/1395

Title:
Post-Quantum Multi-Party Computation

Authors: Amit Agarwal, James Bartusek, Vipul Goyal, Dakshita Khurana, Giulio Malavolta

Abstract:

We initiate the study of multi-party computation for classical functionalities (in the plain model) with security against malicious polynomial-time quantum adversaries. We observe that existing techniques readily give a polynomial-round protocol, but our main result is a construction of constant-round post-quantum multi-party computation. We assume mildly super-polynomial quantum hardness of learning with errors (LWE), and polynomial quantum hardness of an LWE-based circular security assumption. Along the way, we develop the following cryptographic primitives that may be of independent interest: - A spooky encryption scheme for relations computable by quantum circuits, from the quantum hardness of an LWE-based circular security assumption. This yields the first quantum multi-key fully-homomorphic encryption scheme with classical keys. - Constant-round zero-knowledge secure against multiple parallel quantum verifiers from spooky encryption for relations computable by quantum circuits. To enable this, we develop a new straight-line non-black-box simulation technique against parallel verifiers that does not clone the adversary’s state. This forms the heart of our technical contribution and may also be relevant to the classical setting. - A constant-round post-quantum non-malleable commitment scheme, from the mildly super-polynomial quantum hardness of LWE.

ePrint: https://eprint.iacr.org/2020/1395

Talk: https://www.youtube.com/watch?v=rBOIzktrVug

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .