[Resource Topic] 2019/959: Table Redundancy Method for Protecting against Fault Attacks

Welcome to the resource topic for 2019/959

Table Redundancy Method for Protecting against Fault Attacks

Authors: Seungkwang Lee, Nam-su Jho, Myungchul Kim


Fault attacks (FA) intentionally inject some fault into the encryption process for analyzing a secret key based on faulty intermediate values or faulty ciphertexts. One of the easy ways for software-based countermeasures is to use time redundancy. However, existing methods can be broken by skipping comparison operations or by using non-uniform distributions of faulty intermediate values. In this paper, we propose a secure software-based redundancy, aptly named table redundancy, applying different linear and nonlinear transformations to redundant computations of table-based block cipher structures. To reduce the table size and the number of lookups, some outer tables that are not subjected to FA are shared, while the inner tables are protected by table redundancy. The basic idea is that different transformations protecting redundant computations are correctly decoded if the redundant outcomes are combined without faulty values. In addition, this recombination provides infective computations because a faulty byte is likely to propagate its error to adjacent bytes due to the use of 32-bit linear transformations. Our method also presents a stateful feature in the connection with detected faults and subsequent plaintexts for preventing iterative fault injection. We demonstrate the protection of AES-128 against FA and show a negligible advantage of FA.

ePrint: https://eprint.iacr.org/2019/959

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .