Welcome to the resource topic for 2019/870
Title:
The Eleventh Power Residue Symbol
Authors: Marc Joye, Oleksandra Lapiha, Ky Nguyen, David Naccache
Abstract:This paper presents an efficient algorithm for computing 11^{\mathrm{th}}-power residue symbols in the cyclotomic field \mathbb{Q}(\zeta_{11}), where \zeta_{11} is a primitive 11^{\mathrm{th}} root of unity. It extends an earlier algorithm due to Caranay and Scheidler (Int. J. Number Theory, 2010) for the 7^{\mathrm{th}}-power residue symbol. The new algorithm finds applications in the implementation of certain cryptographic schemes.
ePrint: https://eprint.iacr.org/2019/870
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .