[Resource Topic] 2019/773: Efficient Secure Ridge Regression from Randomized Gaussian Elimination

Welcome to the resource topic for 2019/773

Title:
Efficient Secure Ridge Regression from Randomized Gaussian Elimination

Authors: Frank Blom, Niek J. Bouman, Berry Schoenmakers, Niels de Vreede

Abstract:

In this paper we present a practical protocol for secure ridge regression. We develop the necessary secure linear algebra tools, using only basic arithmetic over prime fields. In particular, we will show how to solve linear systems of equations and compute matrix inverses efficiently, using appropriate secure random self-reductions of these problems. The distinguishing feature of our approach is that the use of secure fixed-point arithmetic is avoided entirely, while circumventing the need for rational reconstruction at any stage as well. We demonstrate the potential of our protocol in a standard setting for information-theoretically secure multiparty computation, tolerating a dishonest minority of passively corrupt parties. Using the MPyC framework, which is based on threshold secret sharing over finite fields, we show how to handle large datasets efficiently, achieving practically the same root-mean-square errors as Scikit-learn. Moreover, we do not assume that any (part) of the datasets is held privately by any of the parties, which makes our protocol much more versatile than existing solutions.

ePrint: https://eprint.iacr.org/2019/773

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .