[Resource Topic] 2019/588: Formal Notions of Security for Verifiable Homomorphic Encryption

Welcome to the resource topic for 2019/588

Title:
Formal Notions of Security for Verifiable Homomorphic Encryption

Authors: Jakub Klemsa, Ivana Trummová

Abstract:

Homomorphic encryption enables computations with encrypted data, however, in its plain form, it does not guarantee that the computation has been performed honestly. For the Fully Homomorphic Encryption (FHE), a verifiable variant emerged soon after the introduction of FHE itself, for a single-operation homomorphic encryption (HE), particular verifiable variant has been introduced recently, called the VeraGreg Framework. In this paper, we identify a weakness of List Non-Malleability as defined for the VeraGreg Framework—an analogy to the classical Non-Malleability—and suggest its improvement which we show not to be extendable any more in certain sense. Next, we suggest a decomposition of the abstract VeraGreg framework, introduce novel notions of security for the resulting components and show some reductions between them and/or their combinations. Finally, we conjecture that VeraGreg achieves the strongest (and desirable) security guarantee if and only if its building blocks achieve certain, much more tangible properties, in a specific case together with an assumption on hardness of particular kind of the famous Shortest Vector Problem for lattices.

ePrint: https://eprint.iacr.org/2019/588

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .