[Resource Topic] 2019/419: Algebraic Cryptanalysis of STARK-Friendly Designs: Application to MARVELlous and MiMC

Welcome to the resource topic for 2019/419

Title:
Algebraic Cryptanalysis of STARK-Friendly Designs: Application to MARVELlous and MiMC

Authors: Martin R. Albrecht, Carlos Cid, Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lüftenegger, Christian Rechberger, Markus Schofnegger

Abstract:

The block cipher Jarvis and the hash function Friday, both members of the MARVELlous family of cryptographic primitives, are among the first proposed solutions to the problem of designing symmetric-key algorithms suitable for transparent, post-quantum secure zero-knowledge proof systems such as ZK-STARKs. In this paper we describe an algebraic cryptanalysis of Jarvis and Friday and show that the proposed number of rounds is not sufficient to provide adequate security. In Jarvis, the round function is obtained by combining a finite field inversion, a full-degree affine permutation polynomial and a key addition. Yet we show that even though the high degree of the affine polynomial may prevent some algebraic attacks (as claimed by the designers), the particular algebraic properties of the round function make both Jarvis and Friday vulnerable to Gröbner basis attacks. We also consider MiMC, a block cipher similar in structure to Jarvis. However, this cipher proves to be resistant against our proposed attack strategy. Still, our successful cryptanalysis of Jarvis and Friday does illustrate that block cipher designs for “algebraic platforms” such as STARKs, FHE or MPC may be particularly vulnerable to algebraic attacks.

ePrint: https://eprint.iacr.org/2019/419

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .