Welcome to the resource topic for 2019/197
Title:
Non-interactive Cryptographic Timestamping based on Verifiable Delay Functions
Authors: Esteban Landerreche, Marc Stevens, Christian Schaffner
Abstract:We present the first treatment of non-interactive publicly-verifiable timestamping schemes in the Universal Composability framework. Similar to a simple construction by Mahmoody et al., we use non-parallelizable computational work that relates to elapsed time to avoid previous impossibility results on non-interactive timestamping. We extend these ideas to the UC-framework and show how to model verifiable delay functions (VDF) related to a global clock, and non-interactive timestamping, in the UC-framework. Furthermore, we present new constructions that are substantial improvements over Mahmoody et al.’s construction, such that any forged timestamps by the adversary are now limited to within a certain time-window that depends only on its ratio to compute VDFs more quickly and the time-window of corruption. Finally, we discuss natural applications for our construction in decentralized protocols.
ePrint: https://eprint.iacr.org/2019/197
See all topics related to this paper.
Feel free to post resources that are related to this paper below.
Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.
For more information, see the rules for Resource Topics .