[Resource Topic] 2019/193: Towards Low-Energy Leakage-Resistant Authenticated Encryption from the Duplex Sponge Construction

Welcome to the resource topic for 2019/193

Title:
Towards Low-Energy Leakage-Resistant Authenticated Encryption from the Duplex Sponge Construction

Authors: Chun Guo, Olivier Pereira, Thomas Peters, François-Xavier Standaert

Abstract:

The ongoing NIST lightweight standardization process explicitly puts forward a requirement of side-channel security, which has renewed the interest for Authenticated Encryption schemes (AEs) with light(er)-weight side-channel secure implementations. To address this challenge, we investigate the leakage-resilience of a generic duplex-based stream cipher, and prove the classical bound, i.e., \approx2^{c/2}, under an assumption of non-invertible leakage. Based on this, we propose a new 1-pass AE mode TETSponge, which carefully combines a tweakable block cipher that must have strong protections against side-channel attacks and is scarcely used, and a duplex-style permutation that only needs weak side-channel protections and is used to frugally process the message and associated data. TETSponge offers: (i) provable resistance against side-channel attacks during both encryption and decryption, (ii) some level of nonce misuse robustness, and (iii) black-box AE security with good bounds in the multi-user setting as well. We conclude that TETSponge offers an appealing option for the implementation of lightweight AE in settings where side-channel attacks are an actual concern. Our analysis offers the first rigorous methodology for the analysis of the leakage-resilience of sponge/duplex-based AEs. It can be easily adapted to others: we demonstrate this by showcasing brief analyzes of two other 1-pass AEs Ascon, GIBBON, and two 2-pass AEs TEDTSponge and ISAP. These provide various insights for both designs and implementations.

ePrint: https://eprint.iacr.org/2019/193

See all topics related to this paper.

Feel free to post resources that are related to this paper below.

Example resources include: implementations, explanation materials, talks, slides, links to previous discussions on other websites.

For more information, see the rules for Resource Topics .